Microwave Additive Manufacturing of Continuous Carbon Fiber Reinforced PEEK Composites

Motivation:
Continuous carbon fiber reinforced polyether-ether-ketone (CCF/PEEK) composites are biocompatible materials and have been widely used in spinal cages, bone fixation screws and orthopedic implants, such as knee replacement products. However, the lightweight, customized CCF/PEEK structures are difficult to manufacture. As a promising technology, microwave additive manufacturing can produce those CCF/PEEK structures easily without additional efforts.

Contents:
• Understand the 3D printing process of PEEK plastics and CCF/PEEK composites
• Produce the CCF/PEEK filaments using the developed filament impregnation system in the lab
• Research the difference between microwave and conventional heating of CCF/PEEK filaments by simulation modelling
• Identification of suitable printing parameters by experiments as well as simulation modelling
• Operate microwave additive manufacturing system to print CCF/PEEK tensile samples

Requirements: Materials science and engineering, mechanical engineering, electrical engineering or comparable

Type of work: Analytics, Practices, Simulation

Prerequisites:
• Motivation and interest in the area of 3D printing
• Independent and structured way of working
• Previous knowledge and experience on PEEK printing is an advantage

Start time: now
Location: Campus North/Campus East
Contact: Dr. Nanya Li
nanya.li@kit.edu